SportLogia
Vol. 16, Issue 1, december 2020.

 

THE USE OF ELECTROMYOGRAM IN FOOTBALL SYSTEMATIC REVIEW


Borko Katanić1,Predrag Ilić1, Aleksandar Stojmenović1,Mima Stanković1 & Manja Vitasović2
1University of Niš, Faculty of Sports and Physical Education, Serbia
2Equestrian Club Gorska Team, Serbia


REVIEW SCIENTIFIC PAPER
doi:10.5550/sgia.201601.en.kissv
UDC: 612:796.332

 

 

Abstract

The aim of this systematic review was to indicate and discuss the use of electromyogram in football. For the literature review, following electronic databases were used:  Google School, PubMed, Medline and Mendeley for the period from 2005. to 2019. 20 papers were selected for this systematic review based on the established criteria.  These studies focused the most on researching the following muscles: m.musculus quadriceps, m.biceps femoris, m.gastrocnemius, m.tibalis anterior and m. gluteus maximus. The review has determined quite a heterogenic choice of topics when it comes to the use of the electromyogram (herein after referred to as: EMG) in football, so the obtained results were grouped based on the similar characteristics. Therefore, the results were categorized according to the following topics: acute effects of the specific football activity, impact of the football strength training, training of kicking on the ball, results based on the difference in sexes, while the rest of the results were sorted in the joint group. Summarizing of the obtained results provides the insight in the multiple possibility for use of EMG in football in order to develop high quality analysis of the neuro-muscle activation of a certain muscle regions of the football players.


Key words:EMG, electromyogram, muscles, soccer, football.

FULL TEXT (.pdf)


References

1. Amiri-Khorasani, M., & Kellis, E. (2013). Static vs. dynamic acute stretching effect on quadriceps muscle activity during soccer instep kicking. Journal of human kinetics, 39(1), 37-47.
https://doi.org/10.2478/hukin-2013-0066[CrossRef]
PMid:24511339 PMCid:PMC3916919

2. Beaulieu, M. L., Lamontagne, M., & Xu, L. (2008). Gender differences in time-frequency EMG analysis of unanticipated cutting maneuvers. Medicine and science in sports and exercise, 40(10), 1795-1804
https://doi.org/10.1249/MSS.0b013e31817b8e9e[CrossRef]
PMid:18799990

3. Brophy, R. H., Backus, S., Kraszewski, A. P., Steele, B. C., Ma, Y., Osei, D., & Williams, R. J. (2010). Differences between sexes in lower extremity alignment and muscle activation during soccer kick. JBJS, 92(11), 2050-2058.
https://doi.org/10.2106/JBJS.I.01547[CrossRef]
PMid:20686049

4. Campayo-Piernas, M., Caballero, C., Barbado, D., & Reina, R. (2017). Role of vision in sighted and blind soccer players in adapting to an unstable balance task. Experimental brain research, 235(4), 1269-1279.
https://doi.org/10.1007/s00221-017-4885-8[CrossRef]
PMid:28197674

5. Chauhan, B., Hamzeh, M. A., & Cuesta-Vargas, A. I. (2013). Prediction of muscular architecture of the rectus femoris and vastus lateralis from EMG during isometric contractions in soccer players. Springerplus, 2(1), 548.
https://doi.org/10.1186/2193-1801-2-548[CrossRef]
PMid:24171156 PMCid:PMC3806983

6. Cerrah, A. O., Gungor, E. O., Soylu, A. R., Ertan, H., Lees, A., & Bayrak, C. (2011). Muscular activation patterns during the soccer in-step kick. Isokinetics and Exercise Science, 19(3), 181-190.
https://doi.org/10.3233/IES-2011-0414[CrossRef]
https://doi.org/10.3233/IES-2012-0457[CrossRef]

7. Clarys, J. P., Cabri, J., De Witte, B., Toussaint, H., De Groot, G., Huytng, P., & Hollander, P. (1988). Electromyography applied to sport ergonomics. Ergonomics, 31(11), 1605-1620.
https://doi.org/10.1080/00140138808966810[CrossRef]
PMid:3068053

8. Clarys, J. P. (2000). Electromyography in sports and occupational settings: an update of its limits and possibilities. Ergonomics, 43(10), 1750-1762.
https://doi.org/10.1080/001401300750004159[CrossRef]
PMid:11083153

9. Đurić, S. i Mihaljev-Martinov J. (1998). Klinička neurofiziologija. Niš: Prosveta i Medicinski fakultet.

10. Farina, D., Merletti, R., & Enoka, R. M. (2004). The extraction of neural strategies from the surface EMG. Journal of applied physiology, 96(4), 1486-1495.
https://doi.org/10.1152/japplphysiol.01070.2003[CrossRef]
PMid:15016793

11. Girard, O., Nybo, L., Mohr, M., & Racinais, S. (2015). Plantar flexor neuromuscular adjustments following match‐play football in hot and cool conditions. Scandinavian journal of medicine & science in sports, 25, 154-163.
https://doi.org/10.1111/sms.12371[CrossRef]
PMid:25943666

12. Greig, M. P., Mc Naughton, L. R., & Lovell, R. J. (2006). Physiological and mechanical response to soccer-specific intermittent activity and steady-state activity. Research in Sports Medicine, 14(1), 29-52.
https://doi.org/10.1080/15438620500528257[CrossRef]
PMid:16700403

13. Hart, J. M., Craig Garrison, J., Casey Kerrigan, D., Palmieri-Smith, R., & Ingersoll, C. D. (2007). Gender differences in gluteus medius muscle activity exist in soccer players performing a forward jump. Research in sports medicine, 15(2), 147-155.
https://doi.org/10.1080/15438620701405289[CrossRef]
PMid:17578754

14. Hernandez, C., Estrada, E., Garcia, L., Sierra, G., & Nazeran, H. (2010). Traditional sEMG fatigue indicators applied to a real-world sport functional activity: Roundhouse kick. In 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP) (pp. 154-158). IEEE.
https://doi.org/10.1109/CONIELECOMP.2010.5440776[CrossRef]

15. Katis, A., Giannadakis, E., Kannas, T., Amiridis, I., Kellis, E., & Lees, A. (2013). Mechanisms that influence accuracy of the soccer kick. Journal of Electromyography and Kinesiology, 23(1), 125-131.
https://doi.org/10.1016/j.jelekin.2012.08.020[CrossRef]
PMid:23021602

16. Kaygusuz, A., Meric, F., Ertem, K., Duzova, H., Karakoc, Y., & Ozcan, C. (2005). The effects of different skill training on neuromuscular electric activity of the limbs in amateur sportsmen. Isokinetics and exercise science, 13(3), 175-178.
https://doi.org/10.3233/IES-2005-0201[CrossRef]

17. Kinugasa, R., & Akima, H. (2005). Neuromuscular activation of triceps surae using muscle functional MRI and EMG. Medicine & Science in Sports & Exercise, 37(4), 593-598.
https://doi.org/10.1249/01.MSS.0000159026.99792.76[CrossRef]
PMid:15809557

18. Manolopoulos, E., Papadopoulos, C., & Kellis, E. (2006). Effects of combined strength and kick coordination training on soccer kick biomechanics in amateur players. Scandinavian journal of medicine & science in sports, 16(2), 102-110.
https://doi.org/10.1111/j.1600-0838.2005.00447.[CrossRef]x
PMid:16533348

19. Oliver, J., Armstrong, N., & Williams, C. (2008). Changes in jump performance and muscle activity following soccer-specific exercise. Journal of sports sciences, 26(2), 141-148.
https://doi.org/10.1080/02640410701352018[CrossRef]
PMid:17852695

20. Oliver, J. L., Croix, M. B. D. S., Lloyd, R. S., & Williams, C. A. (2014). Altered neuromuscular control of leg stiffness following soccer-specific exercise. European journal of applied physiology, 114(11), 2241-2249.
https://doi.org/10.1007/s00421-014-2949-z[CrossRef]
PMid:25034627

21. Privalova, I. L., Bobrovskij, E. A., Nikolaev, S. G., Kuranov, V. B., Mamaeva, A. A., Trubitsyn, R. V., & Pushkina, V. (2019). Objectification op function test of the muscles involved in the implementation of targeted kicking actions of football players using the multichannel registration of surface electromyogram method. Ученые записки Крымского федерального университета имени ВИ Вернадского. Биология. Химия, 5(2).

 22. Rahnama, N., Lees, A., & Reilly, T. (2006). Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. Journal of Electromyography and Kinesiology, 16(3), 257-263.
https://doi.org/10.1016/j.jelekin.2005.07.011[CrossRef]
PMid:16146698

23. Read, P. J., Turner, A. N., Clarke, R., Applebee, S., & Hughes, J. (2019). Knee angle affects posterior chain muscle activation during an isometric test used in soccer players. Sports, 7(1), 13.
https://doi.org/10.3390/sports7010013[CrossRef]
PMid:30621242 PMCid:PMC6359063

24. Reaz, M. B. I., Hussain, M. S., & Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. Biological procedures online, 8(1), 11-35.
https://doi.org/10.1251/bpo124[CrossRef]
https://doi.org/10.1251/bpo115[CrossRef]
PMid:16799694 PMCid:PMC1455479

25. Schuermans, J., Danneels, L., Van Tiggelen, D., Palmans, T., & Witvrouw, E. (2017). Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. The American journal of sports medicine, 45(6), 1315-1325.
https://doi.org/10.1177/0363546516687750[CrossRef]
PMid:28263670

26. Serner, A., Jakobsen, M. D., Andersen, L. L., Hölmich, P., Sundstrup, E., & Thorborg, K. (2014). EMG evaluation of hip adduction exercises for soccer players: implications for exercise selection in prevention and treatment of groin injuries. Br J Sports Med, 48(14), 1108-1114.
https://doi.org/10.1136/bjsports-2012-091746[CrossRef]
PMid:23511698

27. Thorlund, J. B., Aagaard, P., & Madsen, K. (2009). Rapid muscle force capacity changes after soccer match play. International journal of sports medicine, 30(04), 273-278.
https://doi.org/10.1055/s-0028-1104587[CrossRef]
PMid:19199196

To cite this article:
Katanić, B., Ilić, P., Stojmenović, A., Stanković, M., & Vitasković, M. (2020)The use of electromyogram in football: systematic review. Sportlogia, 16 (1), 48-66.
https://doi.org/10.5550/sgia.201601.en.kissv

 

 

Received: 04.11.2020.
Approved: 12.11.2020.

Correspondence:
Borko Katanić
University of Niš, Faculty of Sports and Physical Education, Serbia
E-mail:borkokatanic@gmail.com